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CHARACTERIZATION AND ESTIMATION* 

OF TWO DIMENSIONAL ARMA MODELS 

R. L. Kashyapt 

ABSTRACT 

** A class of finite order two dimensional autoregressive moving average (ARMA) is 

introduced having the ability to represent any process with rational spectral density. 

In this model, the driving noise is correlated and need not be Gaussian. Currently 

known classes of ARMA models or AR models are shown to be subsets of the above 

class. -We" discuss^sthe three definitions of markov property and precisely state^the class 

of ARMA models having the noncausal  and semicausal markov property without 
it 

imposing any specific boundary conditions. Next^ considerxthe estimation of parame- 

ters of a model to fit a given image. Two approaches are considered. The first method 

uses only the empirical correlations and involves the solution of linear equations. The 

second method is the likelihood approach. Since the exact likelihood function is 

difficult to compute, y€ resorts^o approximations suggested by the toroidal models. 

The quality of the two estimation schemes are compared via numerical experiments. 

Finally, yr€ consider^he problem of synthesizing a texture obeying an ARMA model. 
f\ 

Keywords: 

Two dimensional ARMA models, noncausal markov, semi-causal markov, parameter 
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I. Introduction 

Parametric representations for two dimensional random fields are useful in many 

applications like image synthesis, classification, spectral estimation, etc. The aim of the 

paper is to develop a finite stochastic difference equation model for regular two dimen- 

sional random fields having rational spectral densities and discuss related topics like the 

various definitions of weak markov processes, parameter estimation and synthesis of 

textures resembling a given non Gaussian texture. 

We will first give the background information regarding the structural representa- 

tions. Rosanov [1], Woods [2] and Besag [3] have shown that any Gaussian markov 

field having an all pole spectral density (i.e., a reciprocal of a linear sinusoidal function) 

possesses a finite difference equation representation, the so-called conditional autore- 

gressive (CAR) model in which the driving input noise is correlated, but does not have, 

in general, a moving average representation. The set of models suggested earlier such 

as the simultaneous AR models [3, 4], causal recursive models [5, 6] is a proper subset 

of the set of CAR models. 

As discussed later, the various types of 2-D autoregressive moving average 

(ARMA) models discussed in [7, 8, 9, 11] have the restriction that the denominator of 

the corresponding spectral density, say A(z), is factorable, i.e., 

A(z) = D1(z,,z2)Di(zfI,Z2I). Thus no general finite difference equation model is avail- 

able for representing a discrete random field having a rational spectral density in which 

both the numerator and the denominator are not factorable. We emphasize the use of 

the word 'finite' since a simple spectral density such as 

Jl + 0(cosX, + cosX2)]/[l ~ 0(cosX, + cosX2)], | <l>\ ,| 9\ < 0.5, <t>*0, cannot be 

represented by any of the ARMA models in [7, 8, 9, 11] using a finite number of param- 

eters, but can always be represented by these models using an infinite number of 

parameters. But the principle of parsimony precludes the use of a model having a large 

number of parameters especially in tasks such as fitting of models to the given data.  In 
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contrast the class of recursive finite ARMA models in one dimension can represent any 

process with a rational spectral density of finite order. 

The 2D case differs significantly from the ID case in relation to the markov pro- 

perty. There are 3 types of weak markov property, namely, causal [10], semi-causal [8, 

9] and non-causal (1-3). In contrast with the ID case where a process obeying an 

ARMA model is a projection of a vector markov process, the general ARMA model in 

the 2D case is neither markovian according to any of the three definitions nor a projec- 

tion of another markov process. However, a particular subset of ARMA models is 

shown to possess the semi-causal markov property which was introduced in [8, 9]. We 

will clarify the precise structure of the ARMA models having the requisite semi-causal 

markov property without imposing any special boundary conditions. 

The next topic to be covered is the estimation of parameters in a model to fit a 

given finite image. We present two approaches. In the first approach the parameter 

estimates are computed from the empirical correlations by solving linear equations. 

There are no iterations in contrast with the ID ARMA model parameter estimation 

problems. The second approach utilizes the likelihood. The exact expression for the 

likelihood of the given observations in terms of the parameters is very complicated. We 

consider an approximation which is easy to handle. The approximation happens to be 

the exact likelihood when the observations obey a variant of the ARMA model, the so- 

called toroidal ARMA model. Finally we discuss a procedure for synthesizing a texture 

obeying a given ARMA model. 

Section II deals with the general ARMA representation, the related markovian pro- 

perties, and the relation to existing 2D difference equation models. Section III contains 

the parameter estimation using the estimated correlations. Section IV deals with the 

likelihood approach which includes the results of numerical experiments on the quality 

of estimates. The next section deals with the problems of synthesizing a texture to 

resemble a real texture. 

•K • . 
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n.  The ARMA Model 

Let y(s), s e L be a two dimensional random field L = {(j,k): j,k are integers}.  Let 

y(«)  be  stationary  and   have  the  correlation   function   Ry(s)   and   spectral  density 

S(z), z=(z„z2). 

oo oo 
S(z) =    E        E     Ry(J.kWz2

k, (2.1) 
j=-oo  k=-oo 

= i/B(z)/A(z), z = [exp 2ffiX,,exp27riX2lr i = N/-1, (2.2) 

where A(z) = 1 -  E    W, B(z) = 1 +   E  ^r2'1 er ~ ö-r. ^ = 4>-t • 
rtNi reN2 

Nj are /mt'/e subsets of (L-(0,0)) and are symmetric, i.e., if (j,k)tN; then (-j.-k^Nj, 

i = 1,2. A and B are finite order polynomials.  A(zi,z2) = A(zf',z2').  Similarly B. 

A(z) * 0 and B(z) * 0 for all z such that I zjl  = 1, i = 1,2. (2.3) 

A(z) and B(z) have no common zero. (2.4) 

Conditions (2.3) and (2.4) assure that S(z) is finite, and positive for all real X = (Xi,X2). 

Our aim is to develop a finite difference equation representation for y(#) valid for any 

spectral density S(') obeying (2.2)-(2.4). 

Theorem 1: The stationary random field y(«) with its spectral density in (2.2) obeying 

the conditions (2.3)-(2.4) obeys the bilateral autoregressive moving average model which 

can be represented as in (2.5) or (2.6). 

y(s) =   E  Ws + r) + v^e(s). (2.5) 
r«N, 

)\>jm* «>?*># V,V?.". "f^Of- /•«_<»/ «_•. ^V^J^.'LSSJOAZJ».'^ A Akfc J*giA«i«»«iiw» I •*•''* *"•**'*' •' *• • 



A(z)y(s) = \fv e(s). (2.6) 

In (2.5) or (2.6), e(s) is a zero mean stationary correlated sequence with the spectral 

density in (2.7). 

Se(z) = A(z)B(z) (2.7) 

Proof: If y(*) obeying (2.5) exists, then taking spectral density of both sides of the equa- 

tion (2.6) and using (2.7) indicates that the spectral density of y(*) is as in (2.2). Thus 

all we have to show is the existence of a sequence y(*) obeying (2.5). This will be done 

by construction. 

Let {w(s), s(L} be an infinite sequence of independent and identically distributed 

random variables having mean zero and variance unity. Let w(*), e(*), y(*) stand 

respectively for the fourier transform of the infinite sequence w(*), e(*), and y(*). Com- 

pute e(z) 

e(z) = v/B(z)A(z) w(z) 

Then the fourier inverse of e(z) yields the sequence {e(s), s e L} having zero mean and 

spectral  density  B(z)A(z).    Compute  y(z)  as shown   below,  which  is  finite  for  all 

| z,|  =1 and | z2|  =1 in view of (2.3). 

y(z) = \fv e(z)/A(z) 

Rearranging the above equation, we get 

(l-£0rz')y(z) = v^e(z). 

The fourier inverse of y(*) yields the desired sequence y(*) obeying (2.5). 

Comment 1: In view of (2.7) the sequence e(s) has nonzero auto correlation only 

over a finite number of lags, as displayed in (2.8) 
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E[e(t)e(t+s)| = -£  ^ • •„ if s t N" , 
r€Nt 

(2.8) 

= 0, otherwise 

where N;' = N;U{0,0},  N" = {r+s: r * Nj, S e Ng}, 

i 
v.-: 

3,0 — 1»      ^0,0 ~" "**i 

0g = 0,  ifsgN2,     0r = 0 if rgNj. 

The sequence e(s) has non zero correlation with y(s+r) only for a finite number of 

values of r. To prove this statement, let us 6nd the cross spectral density Sey(*) from 

eq. (2.6). 

Sey(z) = (v^/A(z)) Se(z) 

= y/v B(z),  from (2.7), 

Equating the coefficients of zr on either side, we get 

E[e(s)y(s + r)] = v^^,  ifrcNj, 

= 0, otherwise. 

(2-9) 

(2.10) 

Comment 2: An alternative representation for y(*) obeying (2.5) is given below: 

\/A(z) y(s) = y/v y/B[T) w(s), (2.11) 

where {w(s)} is an independent and identically distributed (I.I.D.) sequence with zero 

mean and unit variance.   \/A(z) and vB(z) are infinite order symmetric polynomials 

wN V. 

tää^ 
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involving only a finite number of parameters 0r and <j>T. One can verify that the spec- 

tral density of y(*) obeying (2.11) is as in (2.2). The representation in (2.11) is more 

suitable for synthesis of an image, as discussed in section V. Note that the probability 

density of w(*) can be chosen as desired. 

Comment S: Viewing (2.6) as an input-output system with e(*) as input and y(*) as the 

output, we can see, as in the proof of theorem 1, that a necessary and sufficient condi- 

tion for the BEBO stability is that A(z) * 0 for | zJ =1 and | z2| =1. In section V a 

specific algorithm is given for synthesis using this condition. The condition B(z)^0 for 

j z11 =1 and | z2| —I is needed for constructing a whitened representation of y(*) as 

shown below, where w(z) is the fourier transform of the whitened sequence and simi- 

larly y('). 

< v 

w(z) = v/A(z)/B(z) y(z). 

The condition (2.4) on A and B in addition to (2.3) is needed to ensure the 

identifiability of the parameters 0r and <f>v as indicated later. 

Relation to currently known ARMA models 

Case (1): The conditional auto regressive (CAR) model [1, 2, 3] is a special case of (2.6) 

and (2.7) with B(z)=l. The CAR models are called as minimum variance representa- 

tions (MVR) in [9]. 

Case (2):  The simultaneous AR model [3, 9, 10], also called as a white noise driven ^ 

representation (VVNDR) in [9] is a special case of (2.6) and (2.7) where B(z) = l and A(z) " 

has a factorization as in (2.12). ,"• 

W-V 

•>J * -' 
.*» ."• .'• '" .*• .*-'."- -"• .'- .*• .'->'•.y "."•'."- .""V- V- •"» .'-.'• .* .'•."" .* 

.T».1 ^' •«.' ^- v" v^.- i_* - - -_• • • O • " • 
VLyy    •    •     • 

"•.- -.••. :r:\«.•<• %• •.-•••••••rvtox'y .s. VTV y«x- %• N'^y-' v'r V •*•• y'r ^ -->' y v" V •*•• y* •-' •-• y .»V.v 
•••••-N-..A1V----. .v. V_-.JV _vv.iv y.v.y_-.-.v.•.V.-W,JK:C\- O y^ -"V •-•. •-• *•• -.'. ^ «.-. --••. --• --1 -i _•_•...•,-1- 



A(z) = KD(z)D(z_1), D(z) = l-£ 9rz
r, N need not be symmetric. (2.12) 

N 

A simultaneous ARMA model [9, 11, 24] is a special case of (2.6) and (2.7) in which 

both A and B have a factorization as in (2.12). 

Case (8):  Consider the 2-D ARMA models introduced in [7] in which 4>(z), a special 2- 

D transform of the correlation function defined in (2.13) is a rational function as in 

(2.14). 

oo      oo 
*(zi,z2) = E     E    R('i-J2) *H (2.13) 

where 

M,  M2 M,  M, 
c(z) = E E cy A4      D(z) = E E \ A4 

i=0j=0 i =0 j =0 

We emphasize that $(•) is distinct from the spectral density S defined in (2.T, even 

though $ is also called a spectral density in [7]. The ARMA models which possess a $ 

function as in (2.14) is a proper subset of the processes having spectral density S as in 

(2.2) and hence a proper subset of the ARMA models defined in (2.6) and (2.7). This 

result is stated as theorem 2. 

Theorem 2:  If there exists a stationary process y(*) with its $ function as in (2.14), its 

spectral density S has the structure as in (2.15). 

m 

.- 
i=0 j=-oo ;$ 

I 

= C(z)/D(z), (2.14) 

v. 
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M,  M2 

S = */B(z)/D,(z) D.fz"1), D,(z) = £   £ ^ «I 4 
i=0 j=0 

(2.15) 

M2 > M2,  B need not be factorable. 

Proof: 

0 oo .    .       oo      oo 
£      £    R(i,j) z{zj=E    E    R(-iJ)zr' *2 

i=-oo j=-oo i=0j=-oo 

•" v 

oo       OO 
= E     E    RHrJ)*r Z2J. by replacing j by -j 

i=0 j=-oo 

oo      oo 
E     E    R(iJ)zr z2, since R(i,j) = R(-i,-J) 
i=0 j=-oo 

= $(zf\z2'), in view of (2.13). 

G2(z2)G2(z2 >) j=-oo 

M4i 

where G;(z2) =  £  gikZjf, in view of the factorability of 1-D polynomials. 
k=0 

From (2.1), 

S(z,,z2) = 
oo      oo 0 oo 

E .E   +   E    E 
i =0 j =-oo       i =-oo j =-oo 

oo 

R(iJ)z,'zi-   E   R(oJ)z2 
j=-oo MB 

= *(zI)Z2) + ^z.^^^-G^G^M/G^z^G^z,1) 

*»* v" «O -v" \_" -•••«*". -". *"« *k. ••*• •'„ 
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C(z)   +  Cfz-1)       |Gi(z2)l2 

D(z)        Dlz"1)       |G2(z2)|2 

 t/B[z]  

[DfzJG^z^KDfz-'jG^z^)] 

= i/BW/DjMDrfi-1), 

where B(z) is the numerator normalized so that its constant term is one and 

D,(z) = D(z)G2(z2) 

M» 
E E W4 E   g2jZ^ 
i=0j=0 [j=o       j 

M,   M2 

E E 4pH 
i=0j=0 

M2 > M2. 

Comment: A simple consequence of theorem 2 is that a process y(*) with spectral den- 

sity as in (2.2) with a non factorable denominator A cannot have a $ function as in 

(2.15) and thus cannot have the corresponding ARMA representation given in [7j. 

Case (4): Consider the spectral density in (2.2) in which both A and B have the follow- 

ing factorization. 

A(z) = KjD^zJD^z-1),  B(z) = K2D2(z)D2(z1), 

D,(z) = l-    £    drz
r,    D2(z) = l-    £    <*'• 

r ( N| r(Ns 

N4,N5 CL~ (0,0)(j: N4, (O.OjcfNj. Both N4 and N5 are subsets of the nonsymmetrical 

half plane (NSHP) L~ indicated in figure 1.   Then the corresponding ARMA difference 

v1" 
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equation can be written as: 

y(s) =  E  dry(s + r) + V^"(w(8) +   E  d>(s+r)), 
r<N4 rtN8 

where w(«) is I.I.D. (0,1) sequence. The above equation is the analog of the traditional 

ARMA model in time series. If in the above equation, in addition, B(z) = 1 or 

equivalently, dr = 0, then the corresponding process y(*) is said to possess the weak 

linear causal markov property, i.e. 

E[y(s)| all y(s+r), r eL"] =  E  ^i+r), N4 C IT, (2.16) 

The corresponding difference equation is called as a causal AR representation [0]. 

In this case, it is possible to divide the image at any point s into 3 parts, namely, s is 

the present, the set (s+r:reL"} is the past, and {s + r, r # (0,0), r £ L-} is the 

future. 
< 

Case 5: Semicausal models [9] is shown to be a subclass of the general ARMA class in 

theorem 5 to be proved later. 

Let us evaluate the conditional expectation of y(s) given all other values for the 

general model in (2.5). 

Theorem S:  The sequence y(*) in Th. 1 obeying (2.5) and having a Gaussian density 

has the following conditional expectation and variance 

y,(s) ^ E[y(s)| all y(s+r), r * (0,0)] =    £    gry(s+r), (2.17) 
r*(0,0) 

E[(y(s) - y.fs))2] = I//K, (2.18) 

where K and gr are defined as 
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K(l ~ E  Mr) = A(z)/B(z), (2.19) 

L' = L - (0,0), gr = g_r. 

as 

Proo/: Let G(z)   = g grz
r. 

r<L 

u(s) ^ y(»HriW = (1 " G(z))y(s). 

The cross spectral density between v and y is 

Svy(z) - (1 - G(z))Syy(l), 

- i//K, from (2.2). 

(2.20) 

V 

Hence 

E[u(s)y(s+r)] =0\/r * (0,0). 

Hence (2.17) is true since y(') is Gaussian.  To prove (2.18), 

Svv(z) = (1 - G(z))2Syy(z), from (2.20) 

= (i//K)(l - £ grz
r), from (2.2) and (2.19). 

Hence E[v2(s)] = i//K. 

XXX 

The conditional expectation in (2.17) has, in general, an infinite number of terms. The 

next question is the determination of conditions under which the conditional expecta- 

tion in (2.17) has a finite number of terms.  The answer is in Theorem 4. 

Definition:  A sequence y(*) is weak noncausal markov if the following is true: 

kvyw/v/y^M/ .v.v.v.v.". .' .• f 

-•».-..... aaaaaagäa WSSJM •• •»«w^ia *?•>: 



wpTTre*^TTT^ ffffCWt^^?^^|CT^^^T^y^ff^?!*^^!!^^?T?,?<]p*!ET?y7-l7?737?7?r?^'?7^ 

13 

E[y(s)| all y(s+r), r*0,0] = E[y(s)| all y(s+r), rtN, N is finite, symmetric, (0,0) g N] 

Theorem 4-- A stationary sequence is weak noncausal markov and possesses a finite 

linear conditional expectation indicated in (2.21) if and only if the process y(*) has an 

all pole spectral density, i.e., B(z) in (2.2) is a constant 

E[y(s)| ally(s+r), r*(0,0)] =  £  gry(s + r), (2.21) 
KN, 

where (0,0) £ Nj, Nt is symmetric and finite, gr = g_r. 

Proof: 'If part: Let the spectral density of y be *>/A(z).  By theorem 3, the conditional 

expectation is defined in terms of gr in (2.19), 

gr = 0r, if r € N,, 

= 0,      r * (0,0), r g Nv 

Hence the conditional expectation has a finite number of terms. 

'only if part- 

Let   u(s) = y(s) - y,(s) 

= y(s)-(E ErZr)y(s)- (2.22) 
r«N, 

•. 

Since y^*) is the conditional expectation, 

E[u(s)y(s + t)| = 0, Vt * (0,0). (2.23) 

Let E[u(s)y(s)] = K,.   Multiply (2.22) on both sides by y(s + t) and take expectation. 

LetR(t) = E[y(s)y(s + t)|. 

tM&äü^^ 
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R(t) - E SrR(t-r) = 0, if t * (0,0), 

= K„ if t = (0,0),by(2.23). 

Take fourier transform on both sides of the above equation. 

(1 -  £  grz)Sy(z) = K, 
reN, 

i.e., Sy(z) has an all pole spectral density. 

Comment 1: Parts of the theorem 4 have been known in the literature [1-3]. The aim 

of giving the theorem is to show the equivalence of the following three statements. 

(i)    y(*) has the conditional expectation in (2.21). 

(ii)   y(*) has an all pole spectral density i>/A(z) 

(iii) y(*) obeys the conditional AR model in (2.5) where the driving input e(') has the 

special density A(z). 

This equivalence is never explicitly stated in the literature. For instance in [2] both (i) 

and (iii) are together used in defining the CAR model. 

Comment 2: Every sequence y(*) which is causal markov and has the linear expectation 

in (2.16) defined by a neighbor set N4 also possesses the noncausal markov property in 

(2.21) with neighbor set N|, N| D N4.  The reverse is not true [3]. 

We mentioned earlier that y(*) obeying a general ARMA model in (2.5) does not 

possess the noncausal markov property. However a small subset of ARMA models 

possesses another markov property called as semi-causal or half-plane markov. 

:^^:v'y:/^:  1 
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Definition:  (semi-causal or half-plane markov): y(«) is said to be linear half-plane mar- 

kov with respect to the neighbor set N if 

E[y(s)/ all y(s+r), r e L+\ = £ M» + '), (2.24) 
reN 

where L+ = {(j,k): k < 0, (j,k) # (0,0)}.   L+ is displayed in flgure 1.   N is any subset 

of L+ defined below. 

N = N, U N2, 

1 - 

N, = {(i,0), (-i,0); i = l,...,m,} (2.25) 

V 

9*\ 

s 

N2 = {(ij), j = -l,.,-m2, i = ±1, ±2,...,±m} 

We will presently display a subset of ARMA models, the so-called semi-causal 

models which have the semi-causal markov property. 

A(z)y(s) = \fv e(s) (2.26) 

where 

A(z) = 1 - E *rZr> N in (2-25) 
reN 

m, 
= i - E <Wzik + zr

k) 
k=l 

m,       m, 

-   E   E ^f*W, 
k=-m, 0=1 

The correlated sequence e(*) has zero mean, Gaussian probability density and spectral 

density in (2.28) or correlation function in (2.29) 

\: 

äS^;^:-;^^  ,J-Y^'r^^^v^:^^^^ 
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m, 
Se(z) Ä B(z) A i - 2  öp^zf + zfP), 

P=0 

R„(M)=o    ,   iff ^o 

(2.28) 

Ree(k,0) = -0ko ,   if k = ±l,...,±m1( (?ki0 = 0_M (2.29) 

= 1        ,    if k = 0 

= 0       ,   otherwise 

IV 

Eq. (2.26) can be written as the difference equation in (2.30) 

m, 

y(i,j) = E Wy(i+kj) + y(i-kö)] 
k=i 

nti      m« 

+     E      E  0My(i + k,H) + v^e(i,j). 
k=-mi P=l 

(2.30) 

A necessary and sufficient condition for the stability of (2.30) is given below [Thm. 

5 of [9]J. 

A(zltz2) *0 for |z,|  = 1, I z2|  > 1. (2.31) 

The model in (2.26) is called semi-causal because it is causal in the index j, i.e., in 

the RHS of (2.30), j + k, k > 1 does not appear. 

Theorem 5: 

The stationary sequence y(*) defined in (2.26) and (2.27) possesses the weak half- 

plane markov property in (2.24) if and only if the input sequence e(*) in it has the 

.-•.'•.' -•".\-"v   ••'•.•' •"•.". '.*•.- "v"vN/\-"-'•"'.-"• A- '•••".•• •'•'-"- - '•;•-   -     ..•'-••" •"   •.-••.. AvV-* -   • • V -.* •.- -.- • 
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M 
*-— 
1 

correlation    function    in    (2.29)   or   equivalently    y(*)    has    the   spectral   density > 

*B(z)/||A(z)||2. • 

Proof:   'If part: 

Sey(z) = Cross spectral density of e(*) and y(#), 

Afz'1) ' 

Expanding Sey(z) in power series we see that the coefficient of any term involving z^1, 

H > 1 is zero. Hence, 

Rey(k,P) ^ E[e(i,j)y(i-k,j-(l)l = 0, if 9 > 0. (2.32) 

18 
S Let 

R(k) ^ Rey(k,0). (2.33) 

Multiply (2.30) by e(i+k,j), take expectation on both sides and use (2.32) and (2.33). 

R(k) "  E  Vo(R(k + P) " R(k-P)] = Ree(k,0), (2.34) 
p=l 

Let S(zt) be the one dimensional discrete fourier transform of R(k).   Multiply (2.34) by 

z_k, sum from k = -00 to 00 and use Ree(k,0) in (2.20). 

B(z,)S(z,) = i/B(z,) 

Hence S(zj) = v 

or Rey(k,0) = 0, if k * 0 (2.35) 

Hence (2.32) and (2.35) yield 

."• -%-"•."- ."•. - .> .v.'-.-- >V-Y«Y->\"-'. - .•'.•-".• V • v 
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ft« 

a?: 

>: 

E[e(s)y(s + r)] =0   VrfL + , 

Since e(*) and y(*) are Gauss, the above equation yields 

E[e(s)| ally(s+r), r€L+] =0. 

(2.36a) 

(2.36b) 

Taking conditional expectation of y(s) given all y(s + r), r t L + on both sides of (2.26) 

and using (2.36b) yields (2.24). 

'Only if part: 

Since (2.24) is true, (2.36) is true.   Multiplying (2.30) by e(k,0), Q * j, and taking 

expectations on both sides by using (2.36) we get 

E[e(i,j)e(k,0)] =0 \fi *¥ (2.37) 

Multiplying (2.30) by e(i,j) and taking expectation on both sides using (2.36) we get 

Ele(i,j)y(i,j)] = E[e2(i,j)l = v (2.38) 

Multiplying (2.30) by e(i + k,j) and take expectations on both sides 

m, 
Rey(M) =  £  0piO[Rey(k + p,O) + Rey(k-p,0)] + Ree(k,0) 

p=l 

By (2.36), Rey(k,0) = 0 if k * 0 

(2.39) 

(2.40) 

Substituting for Rey(k,0) in (2.39) from (2.40) and (2.38), we get the desired expression 

for Ree(k,0) in (2.29). 

t/v"\»vV->\V.-..*.s>V>Y.> y 
••'- • 
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Comment 1: For images with specific boundary conditions Jain [8, 9] has shown that 

the models in (2.26) have the weak semi-causal property. In theorem 5, we have esta- 

blished the converse also without imposing any specific boundary conditions. 

Comment 2: A semi-causal markov sequence is also causal markov only in the degen- 

erate case B(z) = 1, i.e., 0ko = 0 if k * 0. In this degenerate case, it also possesses the 

noncausal markov property w.r.t. to a suitable symmetric set N4. Apart from this case, 

a semi-causal markov sequence is never noncausal markov or vice versa. 

Comment 3: In this entire section, we have discussed only the weak markov property. 

In the Gaussian case the weak markov property is the same as the strong markov pro- 

perty involving the factorization of probability density. Some additional results con- 

nected with the strong (noncausal) markov property can be found in [3, 13]. 

HI.  Parameter Estimation from Correlations 

Given a finite image over the MxM grid 0, we want to develop a procedure for 

fitting a ARMA model in (2.5) to it, i.e., estimating the unknown parameters in it after 

fixing the neighbor sets Nt and N2. We will give 2 procedures. In this section the 

parameters are estimated using the estimated correlations and it is independent of the 

density of the image. The method is computationally easy, and does not involve any 

iteration. This state of affairs is in contrast to the parameter estimation of ARMA 

models in the time series case. We will point out the reason for the difference. Note 

that here 0T = 0(r) and Rr = R(r). N;, i=l,2,... are finite symmetric subsets of 

{L-(0,0)}. NSi and NSi are mutually exclusive antisymmetric subsets defined by the fol- 

lowing relations: 
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N, = NSi U NSi(      NSi PI NSi = 0, If (i,j) G NSk,(-i,-j) <f Nsk. 

Without loss of generality we can make NSi a subset of (L-L~-(0,0)) where L~ is 

defined in Figure 1. Let the polynomials A and B in the spectral density of the process 

y(-) in (2.2) be: 

A(z) = l-   £   W + sl   ,#NS1 .= m,. 
r<NSI 

B(z) = 1 +   £   W + O   #NS2 = m2. 

Let Ns, = {r„...,rmi}, NS2 = {s„...,smt> 

The corresponding ARMA model equation is 

t 

m = £ ^(ri)(y(s+ri)+y(s-rj)) + v^e(s), 

where e(#) has the following cross spectral density 

Sey(z) = v^B(z), 

i.e.,E[e(s)y(s + r)] = v£, if r =0, 

= y/u <j>r, if rfN2, 

(3.1) 

(3.2a) 

(3.2b) 

= 0, otherwise. (3.2c) 

Choose  a  symmetric  set  N3  having  2m!   nearest  neighbors  of (0,0)  so  that 

N3 ft N2 = 0.  Note N3 is not unique. 

Ns3 s {h'h' ->tm,,tmt+i,...,tmi}. 

We will obtain an explicit expression for the coefficients 9t, <f>t, v in terms of the 

correlations R(s). 

t.-- ,-- - •   • • v v "•• ' - "•". •"- •*• *'• 'V •." •       ••'." '.TV- - '• .VV^ '-•.'•'.'•*^.V"-"^""-"*' Jhjjjjfcafca 
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Multiply (3.1) by y(0) on both sides and take expectation on both sides using (3.2a). 

R(0) = 2 £ ^rj)R(rj) + v. (3.3) 
j=l 

Multiply (3.1) by y(s+s;), SieNS2, on both sides and take expectation using (3.2b). 

m 

r) = ^-S y(s)y(s+r), 
1       s 

R(r) = 

© where summation extends over all valid s in Q and Mi is the number of admissible 

values of s. 
«- 

(iii) Solve the ml linear equations in (3.5) for 0(rj), . . . , 0(rm ) to yield the correspond- 

il» ing estimates 0 
•» 
S (iv) Solve the linear equation (3.3) for v after replacing #(•) by 9, yielding the estimate 

Ü P. 

|                                 R(si) = E ö(rj)[R(ri+sj) + R(srrj)] + P#& i=l,...,m2. (3.4)                   S-J 
g                              j=i : 

I                      Multiply (3.1) by y(s+t;), t;fNS3 on both sides and take expectation acing (3.2c). . 

g                                                mi ] 
>                                 R(ti) = £ <^j) {Rlti + rjJ+Rtt-rj)}, i=l>...,m1, (3.5)                   ] 

I           "' I 
'.< In (3.3), (3.4) and (3.5), the true correlations R( ) can be replaced by their estimates 
ft ; 

and the resulting equations can be solved for ${•), ^(*) and v(') as indicated below. The 

steps are: j 

(i)    Choose the set NS3. 

(ii)   Estimate the various correlation needed in (3.3), (3.4) and (3.5). 

v* •:-' 
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(v)   Solve the linear equation (3.4) for ^(*) after replacing 0 by 0 and i> by v. 

%A It is important to note that the computation does not involve any iteration.   One 

;!'• can show that the estimates are consistent, i.e., as the size of the image M goes to 

>> infinity, the estimates tend to their true values provided A(z) and B(z) do not have any 

• common factors. 

«Si 

'/. Comment 1: The procedure needs the choice of the set N3.  The set could be arbitrary 

W as long as it is exclusive of N2.   Empirical evidence indicates that the one suggested 

S*. here, namely having 2mj nearest neighbors, leads to the estimate with higher accuracy 
V.' 

3} than other choices. 

I 
V.«; Comment 2: As noted earlier, no iteration is needed in the computation.   In contrast, 

.v! the estimation of parameters by the covariance method in the one dimensional ARMA 

W. model is much more complicated and involves iteration.   The reason for the different 

(Sf behavior is the difference in the model equations.  In the 2D case the input sequence e(*) 

is correlated.   In the 1-D ARMA case the input sequence, w(*), is independent.   If we 

P" convert the 1-D ARMA equation into a form similar to eq. (3.1), then the computation 

procedure indicated in this section can be used for 1-D case also.   Note that in this sec- 

5* tion, we aim at estimating directly the coefficients occurring in the spectral density, 

WJ whereas in traditional 1-D ARMA case, we estimate the coefficients of C(zj) and D(zj) 

v! whereS(z1) = ||C(z1)||
2/||D(zi)|r- 

[••'., The sequence of computation is illustrated by an example. 

r: 

- • • •. -. •. -. »J v" - j» v •> j- •.-' - w» • • • - •.- * *KT<JH -  » .•*- •.- j- •••••.•   •   .•.••-.••••   .-.-.•.      .   .•.-.•.-.•.•-••-•-   .*> 
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Example 1: Let the ARMA model be as in (3.6) and (3.7). 

y(s) =0 £ y(s+r) + v£e(s)  , (3.6) 
reN, 

N, = {(0,1), (0-1), (1,0), (-1,0)} 

B(z) =l+^zr,N2 = N„ (3.7) 
«N, 

Solving (3.8)-(3.10) for 0, <f> and v is straightforward.  The numerical results are given in 

the next section. 

IV.  Likelihood 

When the number of parameters to be estimated is not very small compared to the 

image size M2, then the estimates given earlier may not be accurate. Hence, we intro- 

duce the more accurate method of estimation, the so called likelihood method. As 

before let the given set of observations be^. 

I = Col.[y(s),s«n) 

• 

H The required choice of Ns3 = (1,1).  Note R;j = Rj _• - Rj;.  From (3.4), we get 

R0i0 = 40R,O + v. (3.8) 

From (3.5), we get 

Ri,o = *lRo,0+R2fö
+2RIfl] + u<f>, (3.9) 

From (3.6), we get 

Rl,l =2Ö[Rli0 + Rli2). (3.10) > 
.-« 

v". 
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8 

n = {(i,j),0 < i, j < M-l} 

Let the spectral density of y be z/B(z)/A(z). Let us assume that y is Gauss. Then we 

can find the correlation function R(s) of y(*) as a function of Bv<j>x and u from the spec- 

tral density. Then we can find the covariance of the vector £, say C. Thus y is Gauss 

[O,C(0,^,i/)]. But the matrix C is of dimension M2xM2 and R(s) is not a simple function 

of s, 6, v and <j>. Hence the above density expression for y is not useful for tasks like 

maximizing it to find the parameter estimates.  We have to be content with an approx- %• 

imation to the probability density function of y so that it is amenable for optimization. 

Let {Yr,rtfi} be the finite fourier transform of the finite sequence {y(s),sff2}.  Then 

as M tends to infinity, the sequence {Yr} is independent and Gauss with mean zero and 

variance M2 Sr(#^) [14] in (4.2). 

Q (!) A .A - !ffig = exp(i(2?r/M)r))    . _ j-r 
«AM -   A(z Z exp(i(2;r/M)r)) .   » " ^ 1. (4-2) 

i-eTat 

& = Col.(2cos(2jr/M)rTs, sfNS2),  ar = Col.(2cos(2jr/M)rTs, S£NS1) 

C; £ = Col.(*r, reNS2),9 = Col(9r, reNsl) 

S 
;-! Asymptotically, the probability density of {Yr} is: 

I p(Yf, nQ-^u) a [J] 1/(2^,(0,^)1 ,/2exp[-(l/2) £ | | Yr| | 2/M%{0,<j>,v)].   (4.3) 
rtf) reft 

A. 

I 
•< We can show [12] that, if we transform {Yr, nQ} in (4.3) into {y(s), scft}, then the 

RHS of (4.3) is the exact probability density of a set of observations obeying the 

toroidal variant of the ARMA model described below which is valid for the region 0 
v . 
v only. 
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y(s) =    E  ^r(y(s © r) + y(s Gr) + v^e(s), scQ, (4.4) 
r€Ns, 

where © denotes summation modulo M, 

y(s) = y(s mod M), e(s) = e(s mod M). 

(e(s), st Q} have the correlation function described earlier. 

The expression on the RHS of (4.3) has to be maximized w.r.t. 9, <f> and v.   It is 

more convenient to work with the log likelihood. 

hi&&>) = -(M2/2)ln(2H-l/2 Elogfl+^rVl-^r)] 
r 

"(1/2) E I I Yrl l2(lA)Ml +^r)M
2, (4.5) 

red 

Maximizing Jj w.r.t. v yields 

v = (EI I Yr| | 2(1-Ä)/(1 +Ä))/M4 (4.6) 
r 

Substituting it back, and simplifying, we see that the ML estimates of Q and £ are 

obtained by minimizing 3[9,<j>) w.r.t. ^ and ^. 

%<£)= EiogKi+Z^Ai-/^] 
ref) 

,,   ,, * (i-^V) 
+ M2iogE   YM2-rrfr 

Since the minimizing value of (0,^) has to yield a finite value for J(*), the ML estimates 

of 9 and <j> automatically satisfy the conditions and 1 +,$T^r * 0 lH?Ta,. * 0 for all r. 

Thus the ML estimates of j9 anr1 ^ satisfy (2.3). We cannot make such a claim for the 

estimates obtained by the correlation methods especially for small M. The numerical 

aspects of maximization have been discussed in (4,15] for the case of AR models. 
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The likelihood approach can be adapted to the particular situation on hand. If we 

know that the observation is the sum of a signal obeying a CAR model and an additive 

noise, then we can directly write the likelihood and estimate the parameters of the 

CAR model and the corresponding spectrum. If the signal plus noise assumption is 

true, any spectral estimation method which ignores the noise will not give good results. 

This feature has been documented in [16]. 

NV. 

• -y 

»* J 

Numerical Experiments 

The correlation and maximum likelihood estimates are compared via numerical 

experiments. The image model in example 1 of section IV is considered, with numerical 

values & = .22, <f> = .2 and u = 1. Ten different images of size 64x64 obeying this 

model were synthesized using different random sequences, as discussed in section V. In 

each case, the parameter estimates were computed by both the methods. For <f>, 0 and 

v, the mean of the 10 estimates, the standard duration (SD) of the 10 estimates and the 

root mean square value of the deviation of the estimate from the true value (RMSE) 

are given in table 1 for both correlation and ML estimates. Similar experiments were 

performed with images of size 32x32 and 16x16 and the results are also given in table 

1. 

For 64x64 images, the SD and the RMSE are close to one another. Further the 

correlation estimates and the ML estimates of <j> and 0 have similar accuracy. The 

correlation estimate of v appears to be slightly biased. But as the size of the image 

decreases, the RMSE values of the ML estimates are less than the corresponding values 

of the correlation estimate. This feature is to be expected. But the quality of correla- 

tion estimate is not unduly low. For instance for 32x32 image, the RMSE values for 

ML and correlation estimates of 9 are .0124 and .0182, not very drastic. In many image 

processing problems the correlation estimates appear to be adequate, especially in view 

of their low computational demand. 
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V.  Synthesis 

An interesting problem in image processing is the synthesis of an image which 

resembles a real texture. There are many methods of synthesizing images, each one 

based on a different type of model. Synthesis has been done using various types of 2D 

AR models [5, 13, 17-20], and mosaic models [21-22]. Our aim is to explore the use of 

ARMA models.  In an ARMA model in (2.11), there are three sets of parameters: 

(i)       the order of ARMA model, i.e., the sets NS1 and NS2 

(ii)      the values of the coefficients 

(Hi)     the histogram or density of the input process w(*) in (2.11). 

The choice of the appropriate order of the 2D AR models, suitable for a given 

image is given in [12, 23]. A similar procedure is suitable for ARMA model. The esti- 

mation of parameters has already been discussed. We will discuss a convenient method 

of synthesizing an image obeying a ARMA model. Techniques for synthesizing images 

via CAR and SAR models to resemble a given texture which takes into account all the 

aspects mentioned above is given in [13, 19]. 

The synthesis of a finite MxM image to obey exactly the difference equation in 

(2.5) or (2.11) is very difficult. It involves the factorization of a M2xM2 matrix whose 

elements are the correlation of various lags. It is still more difficult to ensure that the 

density of the synthesized y(') has the prespecified form. Instead consider the toroidal 

variant of the ARMA model in (2.11) which can be compactly written in terms of 

{Yr, TiQ}, the FFT of (y(s), s€ft) 

v/Ä7Yr = v^ v/EX, (6.1) 

Ar = A(z = exp(v/rl(2Ä-/M)r)) Br = B(z = expv^jrr/M). 

{Wr, reft} is the FFT of {w(s), scft}, (w(s), scft} being drawn from an I.I.D.   sequence 

with zero mean, unit variance and the histogram P mentioned later on.  As M tends to 

. • . • 
. * • • I 
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infinity, the second order properties of the sequence obeying the toroidal ARMA model 

in (6.1) tend to that of the general ARMA model in (2.5) or (2.11). Eq. (4.4) is also an 

equivalent toroidal representation which is the direct analog of (2.5). 

To generate the histogram P of w(*), for the given image we proceed as follows. 

Using the given image say {y'(s), seQ} and the (estimated) parameters 9, <j>, v etc., gen- 

erate residuals {w'(s), scCl}.  The corresponding FFT can be computed as 

w; = Y; V/A7B7 

where {Yr\ rtft} is FFT of {y'(s), s(fi}. The inverse FFT of {Wr, refi} yields the 

{w (s), scQ}.  The histogram of w  is the required histogram P. 

A.     The Synthesis Procedure is as follows: 

(i)      Generate a sequence {w(s), seÜ} drawn from an I.I.D. population with zero 

mean, unit variance and histogram P. 

(ii)    Compute Wr, reft 

where fr „ is the fourier array, nil, seü 

M 
fr_8 = expf^ -j sTr), s,r«n 

(iii)    Compute yjs), seü the required image matrix 

KW 
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VI. Conclusions 

We have introduced the general class of two dimensional ARMA models which can 

represent any discrete rational spectral density and shown that the various classes of 

two dimensional difference equation models discussed in the literature are subclasses of 

this general class. We have also given various definitions of weak markov processes and 

precisely characterized subclasses of ARMA models having the various types of markov 

properties. Two methods are given for estimating the parameters in the model. 

Finally, a technique is given for synthesizing an image obeying a given ARMA model. 

Acknowledgement: The author would like to thank Mr. G. Boray for carrying out the 

numerical experiments of section IV. 
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